direct product, p-group, metabelian, nilpotent (class 2), monomial
Aliases: C4xC22wrC2, C25.87C22, C23.181C24, C24.536C23, (C24xC4):2C2, C22:4(C4xD4), C24:15(C2xC4), (C22xC4):52D4, (C23xC4):3C22, C23:1(C22xC4), C4o2(C24:3C4), C24:3C4:30C2, (C2xC42):12C22, C23.600(C2xD4), C22.72(C23xC4), C4o3(C23.8Q8), C22.77(C22xD4), C23.216(C4oD4), C4o3(C23.23D4), (C22xC4).746C23, C23.8Q8:150C2, C23.23D4:116C2, C2.C42:60C22, C2.5(C22.19C24), (C22xD4).467C22, (C2xC4xD4):2C2, C2.13(C2xC4xD4), (C2xD4):28(C2xC4), (C2xC4):1(C22xC4), (C4xC22:C4):27C2, C22:C4:24(C2xC4), C2.4(C2xC22wrC2), (C2xC4:C4):101C22, (C2xC4).1558(C2xD4), C22.73(C2xC4oD4), (C2xC4)o2(C24:3C4), (C2xC22wrC2).18C2, (C2xC22:C4):71C22, (C2xC4)o2(C23.8Q8), (C2xC4)o2(C23.23D4), (C22xC4)o(C23.8Q8), (C22xC4)o(C23.23D4), (C2xC4)o(C2xC22wrC2), SmallGroup(128,1031)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C4xC22wrC2
G = < a,b,c,d,e,f | a4=b2=c2=d2=e2=f2=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, fbf=bd=db, be=eb, cd=dc, fcf=ce=ec, de=ed, df=fd, ef=fe >
Subgroups: 1068 in 612 conjugacy classes, 184 normal (13 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C2xC4, C2xC4, D4, C23, C23, C23, C42, C22:C4, C22:C4, C4:C4, C22xC4, C22xC4, C22xC4, C2xD4, C2xD4, C24, C24, C24, C2.C42, C2xC42, C2xC22:C4, C2xC4:C4, C4xD4, C22wrC2, C23xC4, C23xC4, C23xC4, C22xD4, C25, C4xC22:C4, C24:3C4, C23.8Q8, C23.23D4, C2xC4xD4, C2xC22wrC2, C24xC4, C4xC22wrC2
Quotients: C1, C2, C4, C22, C2xC4, D4, C23, C22xC4, C2xD4, C4oD4, C24, C4xD4, C22wrC2, C23xC4, C22xD4, C2xC4oD4, C2xC4xD4, C2xC22wrC2, C22.19C24, C4xC22wrC2
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 21)(2 22)(3 23)(4 24)(5 12)(6 9)(7 10)(8 11)(13 18)(14 19)(15 20)(16 17)(25 30)(26 31)(27 32)(28 29)
(1 11)(2 12)(3 9)(4 10)(5 22)(6 23)(7 24)(8 21)(13 18)(14 19)(15 20)(16 17)(25 30)(26 31)(27 32)(28 29)
(1 11)(2 12)(3 9)(4 10)(5 22)(6 23)(7 24)(8 21)(13 29)(14 30)(15 31)(16 32)(17 27)(18 28)(19 25)(20 26)
(1 21)(2 22)(3 23)(4 24)(5 12)(6 9)(7 10)(8 11)(13 28)(14 25)(15 26)(16 27)(17 32)(18 29)(19 30)(20 31)
(1 17)(2 18)(3 19)(4 20)(5 13)(6 14)(7 15)(8 16)(9 25)(10 26)(11 27)(12 28)(21 32)(22 29)(23 30)(24 31)
G:=sub<Sym(32)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,21)(2,22)(3,23)(4,24)(5,12)(6,9)(7,10)(8,11)(13,18)(14,19)(15,20)(16,17)(25,30)(26,31)(27,32)(28,29), (1,11)(2,12)(3,9)(4,10)(5,22)(6,23)(7,24)(8,21)(13,18)(14,19)(15,20)(16,17)(25,30)(26,31)(27,32)(28,29), (1,11)(2,12)(3,9)(4,10)(5,22)(6,23)(7,24)(8,21)(13,29)(14,30)(15,31)(16,32)(17,27)(18,28)(19,25)(20,26), (1,21)(2,22)(3,23)(4,24)(5,12)(6,9)(7,10)(8,11)(13,28)(14,25)(15,26)(16,27)(17,32)(18,29)(19,30)(20,31), (1,17)(2,18)(3,19)(4,20)(5,13)(6,14)(7,15)(8,16)(9,25)(10,26)(11,27)(12,28)(21,32)(22,29)(23,30)(24,31)>;
G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,21)(2,22)(3,23)(4,24)(5,12)(6,9)(7,10)(8,11)(13,18)(14,19)(15,20)(16,17)(25,30)(26,31)(27,32)(28,29), (1,11)(2,12)(3,9)(4,10)(5,22)(6,23)(7,24)(8,21)(13,18)(14,19)(15,20)(16,17)(25,30)(26,31)(27,32)(28,29), (1,11)(2,12)(3,9)(4,10)(5,22)(6,23)(7,24)(8,21)(13,29)(14,30)(15,31)(16,32)(17,27)(18,28)(19,25)(20,26), (1,21)(2,22)(3,23)(4,24)(5,12)(6,9)(7,10)(8,11)(13,28)(14,25)(15,26)(16,27)(17,32)(18,29)(19,30)(20,31), (1,17)(2,18)(3,19)(4,20)(5,13)(6,14)(7,15)(8,16)(9,25)(10,26)(11,27)(12,28)(21,32)(22,29)(23,30)(24,31) );
G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,21),(2,22),(3,23),(4,24),(5,12),(6,9),(7,10),(8,11),(13,18),(14,19),(15,20),(16,17),(25,30),(26,31),(27,32),(28,29)], [(1,11),(2,12),(3,9),(4,10),(5,22),(6,23),(7,24),(8,21),(13,18),(14,19),(15,20),(16,17),(25,30),(26,31),(27,32),(28,29)], [(1,11),(2,12),(3,9),(4,10),(5,22),(6,23),(7,24),(8,21),(13,29),(14,30),(15,31),(16,32),(17,27),(18,28),(19,25),(20,26)], [(1,21),(2,22),(3,23),(4,24),(5,12),(6,9),(7,10),(8,11),(13,28),(14,25),(15,26),(16,27),(17,32),(18,29),(19,30),(20,31)], [(1,17),(2,18),(3,19),(4,20),(5,13),(6,14),(7,15),(8,16),(9,25),(10,26),(11,27),(12,28),(21,32),(22,29),(23,30),(24,31)]])
56 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | ··· | 2S | 2T | 2U | 4A | ··· | 4H | 4I | ··· | 4T | 4U | ··· | 4AH |
order | 1 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | 2 | 4 | ··· | 4 | 4 | ··· | 4 | 4 | ··· | 4 |
size | 1 | 1 | ··· | 1 | 2 | ··· | 2 | 4 | 4 | 1 | ··· | 1 | 2 | ··· | 2 | 4 | ··· | 4 |
56 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 |
type | + | + | + | + | + | + | + | + | + | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C4 | D4 | C4oD4 |
kernel | C4xC22wrC2 | C4xC22:C4 | C24:3C4 | C23.8Q8 | C23.23D4 | C2xC4xD4 | C2xC22wrC2 | C24xC4 | C22wrC2 | C22xC4 | C23 |
# reps | 1 | 3 | 1 | 3 | 3 | 3 | 1 | 1 | 16 | 12 | 12 |
Matrix representation of C4xC22wrC2 ►in GL5(F5)
3 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 4 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 4 |
1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 |
0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 |
0 | 0 | 0 | 4 | 0 |
G:=sub<GL(5,GF(5))| [3,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,4,0,0,0,0,0,4],[4,0,0,0,0,0,1,0,0,0,0,0,4,0,0,0,0,0,4,0,0,0,0,0,1],[1,0,0,0,0,0,4,0,0,0,0,0,4,0,0,0,0,0,4,0,0,0,0,0,1],[1,0,0,0,0,0,4,0,0,0,0,0,4,0,0,0,0,0,4,0,0,0,0,0,4],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,4,0,0,0,0,0,4],[1,0,0,0,0,0,0,4,0,0,0,4,0,0,0,0,0,0,0,4,0,0,0,4,0] >;
C4xC22wrC2 in GAP, Magma, Sage, TeX
C_4\times C_2^2\wr C_2
% in TeX
G:=Group("C4xC2^2wrC2");
// GroupNames label
G:=SmallGroup(128,1031);
// by ID
G=gap.SmallGroup(128,1031);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,2,448,253,758,248]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^4=b^2=c^2=d^2=e^2=f^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,f*b*f=b*d=d*b,b*e=e*b,c*d=d*c,f*c*f=c*e=e*c,d*e=e*d,d*f=f*d,e*f=f*e>;
// generators/relations